信息來源:secdoctor
人工智能是一個非常重要和復(fù)雜的領(lǐng)域。關(guān)于人工智能的里程碑式事件,這里我們盤點了你應(yīng)該知道的十個。
將人工智能(AI)壓縮到10個“需要記憶的時刻”并不容易。在數(shù)以百計的研究實驗室和數(shù)千名計算機科學(xué)家的幫助下,編制一份每一項具有里程碑意義的成就的清單,都將是一份智能算法的工作。然而,我們已經(jīng)仔細(xì)研究了歷史書籍,為你帶來了人工智能歷史上最重要的10個里程碑式的發(fā)展。
一、神經(jīng)網(wǎng)絡(luò)的誕生
你可能已經(jīng)聽說過神經(jīng)網(wǎng)絡(luò),在當(dāng)今最先進的人工智能背后,是大腦激發(fā)的人工智能工具。你可能已經(jīng)聽說過神經(jīng)網(wǎng)絡(luò),這是一種當(dāng)今前沿人工智能背后受大腦啟發(fā)的人工智能工具。雖然像深度學(xué)習(xí)這樣的概念是比較新的,但它們背后的理論體系可以追溯到1943年的一個數(shù)學(xué)理論。
Warren McCulloch和Walter Pitts的《 神經(jīng)活動內(nèi)在想法的邏輯演算 》可能聽起來非常的普通,但它與計算機科學(xué)一樣重要(甚至超過計算機科學(xué))。其中,《 PageRank引文排名 》一文,催生了谷歌的誕生。在在《邏輯微積分》中, McCulloch和Pitts描述了如何讓人造神經(jīng)元網(wǎng)絡(luò)實現(xiàn)邏輯功能。至此,AI的大門正式打開。
二、人工智能的名字由來
如果要提到人工智能的真正開端,那就要追溯到1955年8月31日。當(dāng)時,研究人員John McCarthy、Marvin Minsky、Nathaniel Rochester和Claude Shannon提交了一份《2個月,10個人的人工智能研究》的提案,第一次提出了“人工智能”的概念。而其中John McCarthy被后人尊稱為“人工智能之父”。
1956年,會議在達特茅斯學(xué)院占地269英畝的莊園舉行。不幸的是,他們對于人工智能的發(fā)展有點過于樂觀了。他們寫到:“我們認(rèn)為,如果一個精心挑選的科學(xué)家團隊努力工作一個夏天,那我們就能取得重大進展?!比欢聦嵶C明,時間花得遠(yuǎn)比想象中的要多很多。
三、反向傳播算法(BACKPROP)的出現(xiàn)
反向傳播(英語:Backpropagation,縮寫為BP),有時縮寫為“BP”,是機器學(xué)習(xí)歷史上最重要的算法之一。盡管該算法成為機器學(xué)習(xí)的主流算法是在20世紀(jì)80年代,但該算法第一次被提出是在1969年。這是一種與最優(yōu)化方法(如梯度下降法)結(jié)合使用的,用來訓(xùn)練人工神經(jīng)網(wǎng)絡(luò)的常見方法。該方法計算對網(wǎng)絡(luò)中所有權(quán)重計算損失函數(shù)的梯度。這個梯度會反饋給最優(yōu)化方法,用來更新權(quán)值以最小化損失函數(shù)。
反向傳播要求有對每個輸入值想得到的已知輸出,來計算損失函數(shù)梯度。因此,它通常被認(rèn)為是一種監(jiān)督式學(xué)習(xí)方法,雖然它也用在一些無監(jiān)督網(wǎng)絡(luò)(如自動編碼器)中。它是多層前饋網(wǎng)絡(luò)的Delta規(guī)則的推廣,可以用鏈?zhǔn)椒▌t對每層迭代計算梯度。反向傳播要求人工神經(jīng)元(或“節(jié)點”)的激勵函數(shù)可微。簡而言之,這意味著創(chuàng)作者可以通過在犯錯時糾正錯誤來訓(xùn)練他們的網(wǎng)絡(luò)。完成后,道具會修改神經(jīng)網(wǎng)絡(luò)中的不同連接,確保下次遇到同樣問題時能得到正確的答案。
四、語言助手的誕生
提及亞馬遜的Alexa、谷歌助手和蘋果的Siri大家一定都不陌生。早在20世紀(jì)60年代中期,麻省理工學(xué)院的一名研究人員就發(fā)明了一個名為ELIZA的計算機心理治療師,可以實現(xiàn)與用戶之間的“智能”對話。在當(dāng)時,ELIZA的發(fā)明者就指出,用戶如此愿意以這種方式與機器交談,這讓他們感到非常驚訝。
五、科技奇點的提出
1993年,作家兼計算機科學(xué)家Vernor Vinge發(fā)表了一篇文章,這篇文章首次提到了人工智能的“奇點”。而這里所指的“奇點”并不是廣義上的,而是指未來某一天機器將變得比人類更聰明,甚至?xí)〈祟?,主宰人類世界。但?993年,作家兼計算機科學(xué)家Vernor Vinge發(fā)表了一篇文章,這篇文章推廣了這個想法。
被稱為“即將到來的技術(shù)奇點”,Vinge預(yù)測,在未來30年內(nèi),人類將擁有創(chuàng)造超級人工智能的能力。他寫到:“不久之后,人類時代就會結(jié)束。”這是一個警告,和現(xiàn)如今特斯拉CEO馬斯克所擔(dān)心的一樣。
六、第一輛自動駕駛汽車誕生
你認(rèn)為谷歌開發(fā)了世界上第一輛自動駕駛汽車嗎?錯!早在1986年,德國聯(lián)邦國防軍大學(xué)的研究人員就在一輛奔馳面包車上安裝了攝像頭和智能傳感器,成功地在空無一人的街道上行駛。
幾年后,一位名叫Dean Pomerleau的卡內(nèi)基梅隆大學(xué)的研究人員建造了一輛自動駕駛的龐蒂克運輸小貨車,并沿海岸線從賓夕法尼亞州的匹茲堡到加州的圣地亞哥,共行駛了2797英里。相較于當(dāng)今的自動駕駛技術(shù),當(dāng)時的這項技術(shù)像是小兒科,但是至少它證明了無人駕駛是可以實現(xiàn)的。
七、IBM“深藍”戰(zhàn)勝國際象棋冠軍
對于人工智能來說,1997年是一個標(biāo)志性的年份,IBM的“深藍”超級計算機在一場人機大戰(zhàn)中戰(zhàn)勝國際象棋冠軍Garry Kasparov。盡管毫無疑問,深藍的處理信息比人類更快,但真正的問題是,它是否更有策略地思考。事實證明這是可以的!
這一結(jié)果可能并沒有證明人工智能有能力在有明確規(guī)則的問題上表現(xiàn)得異常出色,它仍然是人工智能領(lǐng)域的巨大飛躍。
八、IBM“沃森”在智力競賽節(jié)目中大獲全勝
就像深藍與Garry Kasparov的比賽一樣,IBM的人工智能在2011年面臨著另一個巨大的挑戰(zhàn)——沃森人工智能在著名的智力競賽節(jié)目“Jeopardy”中擊敗了對手布拉德·拉特和肯·詹寧斯,成功贏取了100萬美元的大獎。比賽結(jié)束后,肯·詹尼斯打趣道:“歡迎我們的新機器人霸主?!比斯ぶ悄艿脑俅蝿倮?,又一次向世界證明了人工智能比人腦更快。
九、AI也愛貓?通過深度學(xué)習(xí)算法識別貓科動物
2012年6月,谷歌研究人員Jeff Dean和吳恩達從YouTube視頻中提取了1000萬個未標(biāo)記的圖像,訓(xùn)練了一個由16,000個電腦處理器組成的龐大神經(jīng)網(wǎng)絡(luò)。盡管沒有給出有關(guān)它們的識別信息,但人工智能還是能夠通過深度學(xué)習(xí)算法來識別貓科動物的照片。
事實證明,就像我們一樣,即使是令人印象深刻的智能AI,也喜歡看視頻,而且尤其喜歡貓科動物。
十、谷歌AlphaGo戰(zhàn)勝世界圍棋冠軍李世石
2016年3月,繼IBM深藍之后,谷歌DeepMind的AlphaGo在四場比賽中擊敗了國際圍棋世界冠軍李世石,而這場激烈的人機大戰(zhàn)吸引了來自世界各地的6000萬人的觀看。同樣,2017年的升級版AlphaGo再次擊敗了國際圍棋大師柯潔,引發(fā)了全世界的關(guān)注。